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The nature of instability and disturbance amplification in the laminar natural 
convection boundary layer over a vertical flat surface with uniform heat flux 
has been theoretically investigated. The coupled Orr-Sommerfeld equation has 
been numerically integrated for a Prandtl number of 6.7, with the boundary 
condition that the disturbance heat flux be zero at  the surface. The spatial 
amplification characteristics of disturbances convected downstream were 
analyzed, and constant amplification rate contours were determined. The relative 
amplification has been calculated from these contours and is presented in the 
form of amplitude ratio contours. An important feature of these results is that the 
low frequency disturbances, which become unstable first, amplify very slowly 
and also have wavelengths which are much longer than the distance to the leading 
edge. The higher frequency, shorter wavelength, disturbances amplify much 
faster and are, therefore, presumed to be the dominant ones in stability considera- 
tions. The nature of the velocity and temperature amplitudes and phase profiles 
across the boundary layer has also been examined. 

1. Introduction 
Progress in the study of stability, of wave amplification toward transition, 

and of turbulence in external natural convection flows has lagged behind similar 
studies in forced flow .This is at least partially a result of the greater complexity 
of natural convection flows. The results in forced flow have often, however, 
pointed out the most promising theoretical and experimental approaches to the 
natural convection problem. 

The first analytical investigation of external natural convection laminar 
instability was a study by Plapp (1957). The coupling of the momentum and 
energy disturbance equations, through the temperature dependent body force 
term, was demonstrated. Several early attempts at  solving these equations were 
very approximate and restricted to considerations of the uncoupled momentum 
equation only (i.e. the coupling term was neglected). 

Nachtsheim (1963) presented the first complete solutions of the coupled 
disturbance equations. These were obtained by numerically integrating the 
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equations of Plapp (1957) across the boundary layer. In  addition to some 
calculations without coupling, the full equations were solved for air (Pr = 0.733) 
and for water (Pr = 6.7), for flow over a vertical isothermal surface. The tempera- 
ture disturbance was taken as zero a t  the surface. The inclusion of coupling had a 
significant effect on the location and shape of the neutral curves. 

Polymeropoulos & Gebhart (1967) reported the first critical experimental 
study of incipient laminar instability in external natural convection flows. 
Employing techniques found successful in force flows, and a 20 cm Mach- 
Zehnder interferometer, many of the theoretical results of Nachtsheim (1963) 
were verified. 

In  a recent theoretical and experimental investigation, Knowles (1967) 
examined the coupled equations numerically for the flow over a vertical uni- 
form flux surface. He considered a range of Prandtl numbers from 0.733 to 6.9 
and showed the effect of the nature of the boundary condition imposed on the 
temperature disturbance a t  the surface. 

The present work relies heavily on the results of these investigators, and in 
many ways it is an extension of the work of Knowles & Gebhart (1968). 

2. Theory 
The laminar flow (i.e. the base flow) whose stability properties are under 

investigation here, is the natural convection flow about a vertical flat surface. 
This work was intended for eventual comparison with experimental data taken 
in the natural convection flow of a liquid (Pr = 6.7) about a thin vertical, 
electrically heated foil. The foil generates a uniform heat flux over its area, so 
the base flow was taken as the flow over a uniform flux surface. 

The flow is laminar near the leading edge and for some distance up the surface. 
Farther up the surface the flow will undergo transition to turbulence. It is the 
stability of the laminar flow preceeding transition that is under investigation. 
The flow is said to be stable a t  a location if a disturbance to the laminar flow 
field tends to dampen out as it is convected past that location. The flow is said 
to be neutrally stable if the disturbance amplitude does not change, and unstable 
if it grows. As expected, this behaviour is a strong function of the frequency of the 
disturbance. 

The base flow is a function of x (distance from the leading edge) and y (distance 
normal to the plate). A solution similar t o  those presented by Sparrow & Gregg 
(1956) was used for the uniform heat flux base flow. The disturbances are taken 
to be functions of x, y and t (time). Natural convection stability considerations 
are more complex than those of forced flow, since the energy equation is coupled 
to the momentum equation through the body force term. Both velocity and 
temperature disturbances must be considered simultaneously. The disturbance 
stream function and temperature are assumed to have the form 
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For & (wave-number) and (frequency) complex, these functions describe a 
travelling wave disturbance in the flow. The amplitude and phase are functions 
of the distance normal to the surface (8). 

The momentum and energy equations are linearized with these two disturbance 
quantities. The terms containing derivatives of the base flow quantities with 
respect to x are neglected (i.e. the base flow in the disturbance equations is 
assumed to be a function of y only). The results of this one-dimensional analysis 
will be used to predict the behaviour of a disturbance in a two-dimensional base 
flow. This is not unreasonable since derivatives of the base flow quantities with 
respect to x are much smaller than derivatives with respect to y. 

The equations are non-dimensionalized using the characteristic length 
(JC = 52/G*), velocity (0, = ~ G * ~ / 5 2 )  and temperature (pc = 5q”O/kG*) for a 
uniform flux base flow where G* = 5(Gr*/5)9 and Gr* = (gPrp”04/kv2). Except 
for the sign of pc, these are the same characteristic quantities used by Poly- 
meropoulos & Gebhart (1966) in their study of the stability of this type of base 
flow. The result is the coupled Orr-Sommerfeld equation: 

( U  -9) s- $T’ +- i (s”-a%) = 0, 
aG* Pr (4) 

where U and T are the dimensionless base flow velocity and temperature profiles 
respectively. All quantities in these equations are dimensionless and primes (’) 
denote derivatives with respect to (7 = y”/JC). These are analogous to those equa- 
tions originally derived by Plapp ( 1957). Inclusion of temperature disturbances 
has made this a sixth-order set of equations as compared to a fourth-order set in 
the uncoupled and forced flow cases. 

The normal and tangential components of disturbance velocity (i.e. q5 and q5’) 
must go to zero at  the surface and far from it. The disturbance temperature must 
also go to zero far from the surface. It has been shown by Knowles & Gebhart 
(1968) that at the surface the boundary condition on the disturbance temperature 
is 

z 
s(0) = - d ( O ) ,  

Q * Y  

where &* = (Pr/5) [ (Cgl)J(Cg2)f] .  This is the result of a heat balance at the surface. 
It relates the time rate of change of the energy stored in the surface, due to 
thermal capacity, to the disturbance heat flux in the fluid a t  the surface. This 
boundary condition results from a thermal capacity coupling between the vertical 
element and the fluid. This is a large effect and is important in many practical 
natural convection configurations. The nature and effect of this boundary con- 
dition is discussed in detail by Knowles & Gebhart (1968). 

This boundary condition can be rewritten as 
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where Q = [Pr[(C,),/(C,),] (g/3Tq"Z4/k~2)f] .  Written in this form the new para- 
meter, &, unlike &*, is independent of location (i.e. it  is not a function of 5). 
Solutions could be determined for any value of Q. The two extreme cases of this 
boundary condition are s(0) = 0 and s'(0) = 0 (when QG*Sp is large and small 
respectively). All physical situations are between these two extreme conditions. 
These extremes, however, have the advantage that they are independent of G* 
and p. The s'(0) = 0 boundary condition was chosen for this present work 
because both Q and G* are relatively small for thin elements in liquids. Q is small 
because of the low heat capacity of the thin metal foils used to generate the flow 
and G* is relatively small because consideration is being given to the earlier 
stages of disturbance amplification. The s(0) = 0 boundary condition applies 
when Q and G* are large. Q would be large for a surface with a large heat capacity. 

The problem, as stated to this point, has been investigated by Knowles & 
Gebhart (1968). Among other things, they located one point on the neutral curve 
for a Prandtl number of 6-7. At a, Prandtl number of 6.9, they located the lower 
branch of the neutral curve, and the upper branch out to G* = 65. All their 
investigations were confined to studies of neutral curves. The subject of the 
present paper is an improved method of solution of the disturbance equations. 
By this improved method the solutions are extended into the damped and ampli- 
fied regions and to larger values of G*. 

An asymptotic solution like that used by Nachtsheim (1963) is needed in the 
region outside the boundary layer. In  that region the base flow quantities in the 
Orr-Sommerfeld equation (i.e. U ,  U" and T') go to zero. In  order to obtain an 
asymptotic solution these quantities are set equal to zero in the disturbance 
equations. The result is two ordinary differential equations (with constant 
coefficients) for the amplitude functions: 

q5"" - (a2 + b2)  q5" + (a2b2) r$ + s' = 0, 

sN - c2s = 0, 
( 7 )  

(8) 

where a = a, b = (a2 - i@G*)*, c = (a2 - i@G* Pr)). 

These asymptotic equations have the general solutions (when Pr + 1) 

r$ = c1 ea?l+ c2 e-ag + c3 ebv + c4 e-bv + c5 erg + c 6 )  e-cv 

a2) (c2 - b2) e-ct. 

Since both q5 and s go to zero as T,I goes to infinity, the coefficients of the terms 
whose exponents have positive real parts should be identically zero. Depending 
on the manner in which the numbers b and c are calculated, this means that either 
cl, c3 and c5, or cl, c4 and c6 must be zero. The results of the square-root algorithm 
used to calculate b and c depend on whether complex numbers with negative 
imaginary parts are considered to have arguments between rr and 277 or between 
0 and -rr. 

The general method of solution is to integrate numerically the full equations 
(3) and (4) across the boundary layer, simultaneously satisfying the asymptotic 
solution at  the outer edge and the boundary conditions at the surface. The 
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choice must now be made as to the direction of integration. If the equations are 
integrated going away from the surface, the solutions must be matched with the 
asymptotic solution at the edge of the boundary layer. This method was used 
by Nachtsheim (1963) and Knowles & Gebhart (1968). The starting values at  the 
surface (and the other eigenvalues) are adjusted until the coefficients of the 
terms with positive real parts in their exponents (cl, c3 and c5 or cl, c4 and c6) 
become small. This method has within it the shortcoming that no matter how 
precisely one knows the starting values, the solutions will eventually increase 
without limit if carried to large enough values of 7 even though the coefficients 
of the terms with positive real parts in their exponents are extremely small. 
This practical difficulty usually arises at  large values of G* because of the strong 
dependence of b and c on G*. 

This problem can be avoided entirely by integrating from the edge of the 
boundary layer in, toward the surface (refer to Kaplan (1964)). In  this procedure 
the integrations are started with the asymptotic solution using only the terms 
with negative real parts in their exponents. The coefficients of the exponentials 
(and the other eigenvalues) are adjusted until the values of 4, q5’ and s’ become 
small at the surface. In  addition to being more stable, this method offers certain 
computational advantages. When integrating away from the surface, all of the 
starting values are known, or guessed, at  the surface. A Runge-Kutta integrator 
is generally used to start the integration. When enough back-points have been 
calculated, a faster integrator (such as Adams method) is used. When integrating 
in, no such change is necessary since the asymptotic solution can provide as 
many back-points as is necessary to start the integrator. For these reasons, all of 
the integrations in this present work were done going toward the surface. 

For this problem the outer edge of the boundary layer was taken at  7 = 5, and 
a step size of 0.10 was used. The results of this programme, where comparable, 
were in excellent agreement with those of Knowles (1967), where the effect of 
step size and boundary-layer thickness were thoroughly investigated. Since it 
was intended to use this programme for calculations at a large number of points 
on the stability plane, it was an economic necessity that the calculation at  each 
point be very fast. Since calculation time is roughly proportional to the boundary- 
layer thickness used, the slight loss of accuracy involved with using a thickness 
of 5 was considered worth the large reduction in computer time needed. Using a 
thickness of 6 instead of 5 would have required about 20 % more computer time 
for the same results. 

The eigenvalues of the solution were chosen as the real part of the wave- 
number (cc,,), the real part of the frequency (p,) and the coefficients of the ex- 
ponentials in the asymptotic solution (ca and c6). Since the equations are linear, 
and the boundary conditions are homogeneous, q5 was set equal to one at 7 = 5. 
This fixed cg, once the other two coefficients were known. The square-root 
algorithm used in this work considered complex numbers with negative imaginary 
parts to have arguments between 0 and - 7 ~ :  As a result of this, cl, c3 and c5 were 
taken to be identically zero. This left the distance amplification rate (ai), the time 
amplification rate (pi) and G* as input parameters. This choice of eigenvalues 
allows one to choose a contour of constant amplification rate and to march 
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along it by changing a*. The solution a t  each cT* will be a solution on the contour. 
pi was always taken to be zero, so p is a real number. This is in agreement with 
the experimental situation where a wave is introduced at  some location and 
amplifies at constant frequency ( f )  as it travels downstream. The amplification 
is with distance, as indicated by a,. The amplitude at a particular location is time- 
steady. Under these conditions the neutral curve and amplification rate contours 
were located. 

A fourth-order Adams predictor-corrector integrator was used. The asymp- 
totic solution provided the values of the functions and of the derivatives a t  the 
edge of the boundary layer, and at three other back-points. The equations were 
integrated toward the surface to give $ , $ I  and s’ at 7 = 0. Corrections were then 
made on the eigenvalues according to the Newton-Raphson technique employed 
by Nachtsheim (1963). This method required the integration of correction equa- 
tions across the boundary layer. These were started and integrated in the same 
manner as the Orr-Sommerfeld equation. In  all, a total of sixty first-order, real 
equations were integrated across the fifty points in the boundary layer with each 
iteration. 

Two numbers were used as indicators of convergence in the Newton-Raphson 
iterations. The first was the sum of the absolute values of the relative changes of 
of the six eigenvalues. It was demanded that this indicator be less than lop6. The 
second indicator was the sum of the absolute values of the real and imaginary 
parts of $, $’ and sf at 7 = 0. This was actually a relative indicator since $ was 
always equal to one at the edge of the boundary layer. During the final stages of 
convergence, the second indicator usually lagged behind the first. This lag was 
the eventual cause of terminating calculations a t  large values of G*. 

It was intended to solve the Orr-Sommerfeld equation at  a large number of 
points from the ‘critical’ G* (i,e. the minimum G* at which the flow is unstable) 
up to a G* of 300. The simplest way to do this is to march in relatively small steps 
from points where convergence has already been achieved. One method of doing 
this is to change one of the parameters (a* for example) slightly at  a point where 
the eigenvalues are known. If the change is small enough, the eigenvalues would 
be expected to change only slightly, and the Newton-Raphson iterations can 
then be used until convergence is achieved at  the new point. This method of 
marching would be improved if a better first guess had been used for the eigen- 
values at  the new point. This improvement would be seen in a faster convergence 
and the larger step sizes possible. A number of extrapolation procedures were 
tried, but a simple least-squares straight line fit was chosen. A line was fitted 
through each eigenvalue at four points where convergence had been achieved. 
When beginning a march, four points were calculated by marching with small 
steps and without an extrapolator. The extrapolator was then used with these 
four back-points and a much larger step size. As each new point was calculated, 
the oldest point was dropped, and the least-squares lines were calculated for a 
new set of points. The programme was marched in ai with G8 held constant, and 
in G* with ai held constant. The marching procedure worked well over the entire 
(p, G*)-plane except where the marching parameter (ai or G*) went through an 
extreme. For example, G* goes through a minimum at the nose of the neutral 
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curve. When such an extreme occurs, the eigenvalues cannot be accurately pre- 
dicted by the extrapolator because they vary rapidly with small changes in the 
marching parameter. In  such situations graphical extrapolation, i.e. curve 
plotting, was found to be best. Using these various procedures, the amplification 
rate contours were located on the p-G* diagram (figure 1). 

0.10 

P 

005 

0 

--0.010 

---C----0.025 

50 100 J 50 200 250 300 

G* 

FIGURE 1. Distance amplification rate (ai) contours plotted on p-G* co-ordinates. 

As mentioned, it became increasingly difficult to satisfy the boundary con- 
ditions at  the surface at  large values of G" and particularly when p was also 
large, i.e. on the upper branches of the contours. As the corrections to the eigen- 
values became smaller, the values of q5, q5' and s' at 7 = 0 also decreased, but not 
as fast. Eventually, the eigenvalue corrections were in the last few significant 
figures, and if the values of q5, q5' and s' at 7 = 0 were not small enough, the alterna- 
tive was to go to double precision arithmetic. This slows down the calculation 
rate tremendously. This was the cause of the termination of calculation and the 
reason why the upper branches of the a, = 0 and - 0.010 curves are not complete. 
By using double precision arithmetic Knowles (1967) found that the eigenfunc- 
tions were improved, i.e. the boundary conditions were satisfied more accurately. 
The eigenvalues, however, only underwent changes in the last few significant 
figures. Thus, even though the boundary conditions on the eigenfunctions at 
7 = 0 could not be met satisfactorily with single precision, the eigenvalues could 
be determined with acceptable accuracy. 

3. Results 
Two distinct types of information were produced by the programme, the 

eigenvalues and the eigenfunctions. As mentioned, the eigenvalues were known 
to a t  least six significant figures. The eigenvalue information is shown in figure 1 
in the form of a plot ofp versus G*. p equals /3, because pi was taken to be identi- 
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cally zero. G* is analogous to the Reynolds number (based on boundary-layer 
thickness) in the forced flow case, since both occur in the same way in the Orr- 
Sommerfeld equation. This Reynolds number is proportional to the square-root 
of the distance from the leading edge (&), but G* is proportional to 2t. The data 
forms contours of constant distance amplification rate (ai). The relative ampli- 
tude growth rate is proportional to -u+. From this value one can calculate the 
rate at  which a disturbance amplifies (or decays) as it is convected downstream. 
The neutral curve (ai = 0 )  goes through a critical (minimum) G* of 13.5 (at 
p = 0.0255) and has a maximum /3 of 0-1121 at G* = 189. The calculation of the 
neutral curve and the ui = - 0.010 contour were stopped at  G* = 200 and 250 
respectively because of the difficulties with the eigenfunctions, although they 
probably could have been continued with little loss of accuracy, given sufficient 
machine time. 

An investigation was made into the possibility of amplification rate contour 
closure. The contour for a high amplification rate (ui = - (3.05475) was examined. 
It was shown that this contour does close. Apparently lower ui contours also 
close at  higher values of G*. However, it  is still unknown as to whether the 
neutral curve closes, i.e. whether or not the upper branch has a non-zero 
asymptote. 

As a disturbance is convected downstream its amplitude changes as a result of 
two effects. The base flow velocity and temperature increase in the downstream 
direction, and this increases the disturbance amplitude. This type of disturbance 
growth is accounted for by the non-dimensionalization. 8, is proportional to  
9#, and pc is proportional to 2*. There is, however, a second mechanism for 
disturbance decay and growth in the flow, and it is characterized by the Orr- 
Sommerfeld equation. It predicts the decay and amplification of the non- 
dimensionalized amplitudes. When a disturbance is neutrally stable at  a point, 
its non-dimensionalized amplitude is neither increasing nor decreasing, but its 
actual (dimensional) amplitude is increasing in proportion to the increase in the 
base flow quantities. 

It is the growth of the non-dimensionalized amplitude as the disturbance is 
convected downstream which leads to transition and turbulence (refer to Smith 
(1956)). As a disturbance travels from 9, to 2,. its non-dimensionalized amplitude 
ratio for the two locations ((A&), where A ,  and A ,  are the non-dimensionalized 
disturbance amplitudes a t  9, and 2, respectively) is given by the following ex- 
pression 

(A,/A,) = exp( - /baaid9} .  
21 

The integral can be non-dimensionalized to give 

The expression above is an estimate of disturbance amplitude growth with 
G* because the disturbance eigenfunctions change with C* along a path of 
constant physical frequency. To assess exactly the growth of a disturbance 
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one might consider a given disturbance as a starting condition for an initial 
value analysis. This may require the numerical integration of the full equations 
in G*.  

The integration in (12) is carried out along the path a disturbance follows 
across the amplification rate contours as it is convected downstream. The 
physical frequency (f) of a small (linear) disturbance remains constant as it 
travels. Because of the non-dimensionalization, /3 decreases proportional to 
G * 4 .  The waves, therefore, travel on paths defined by p.G** = const. The 
integration was carried out graphically along a family of ten of these curves 
(three of which are shown in figure l,fl,fz andf3) to give the relative amplification 
at  each point along each of the paths. This information was plotted in the form 
of amplitude ratio contours (figure 2). The number on a contour is the amplitude 

0 50 100 150 200 250 300 
G* 

FIGURE 2. Amplitude ratio contours plotted on P-G* co-ordinates. 

(non-dimensionalized) a wave will have as it crosses that contour if it had anampli- 
tude of one when it crossed the neutral curve. The maximum amplitude ratio in 
the range caIcuIated is about 24 at G* = 300 and /3 = 0-029. The p. G** = const. 
curve passing through this point is one of the paths shown in figures 1 and 2 (f.). 
This represents the path of the most amplified frequency, up to G* = 300. This 
'most amplified' path depends on the G*, i.e. downstream location, one is con- 
sidering. The most amplified path at  G* = 105 passes through the point where 
p = 0.035, which is below the most amplified path for G* = 300 (i.e. f2). The 
disturbance which begins to amplify first (i.e. at  the lowest G*) is the one whose 
frequency path passes through the nose of the neutral curve. This disturbance 
(fl) begins to  amplify at  the critical G* (13.5)) but when it reaches G* = 300, it 
has amplified by less than a factor of two. This disturbance begins to amplify 
first, but since the amplification rates it has are very small, the total amplifica- 
tion at  G* = 300 is much less than that of a wide band of higher frequency dis- 
turbances (e.g. f. andf3). 
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The importance of the critical C* is further diminished by a consideration of 
the wavelengths (x) there. It can be shown that 

1077 (i) =OlrG"* (13) 

Using this relation one can show that at G* = 13-5, the wavelength of a dis- 
turbance on the path passing through the nose of the neutral curve (fl) is 12.5 
times the distance to the leading edge (2) .  Even at  a G* of 300, the wavelength 
on this same path is about 2.5 times the distance to the leading edge. On the 
most amplified path to G* = 300 ( f2 )  the wavelength is equal to the distance 
from the leading edge at  the neutral curve (a* = 43.5) and about Q the distance 
to the leading edge a t  G* = 300. The shorter wavelengths and the larger ampli- 
fications associated with the most amplified path suggests that it is more im- 
portant in the process of wave amplification, toward actual transition, than is 
the critical G* and the nose of the neutral curve. 

The real and imaginary parts of the wave velocity (C, and Ci where C = P/a) 
have also been calculated at all the points examined. Some of this information 
has been shown in figure 1. A line has been plotted on which the real part of the 
wave velocity is equal to the maximum velocity in the base flow profile (Urnax). 
The location of this curve is known exactly only where it crosses the amplifica- 
tion rate contours shown. (There is some uncertainty in the exact location of this 
curve a t  G* = 300 because points have not been calculated inside the 

contour at  this G*. It is, however, known to be above the lower branch of that 
contour. Its location here has been interpolated from the contours above and 
below.) Above this line, C, is less than Urn,,, and there are two 'critical layers' 
(i.e. where C, = U )  in the boundary layer. Below this line, C,, is greater than 
Urn,,, and there are no critical layers. 

Along a wave path (P.G*h = const.) C, is found to be nearly constant. For 
example, along the two highest paths shown in figures 1 and 2 (f2 andfJ C, 
varies by less than 3 yo from the neutral curve to G* = 300. This indicates that 
C, is increasing with 2 in nearly the same manner as the base flow velocity (i.e. pro- 
portional to 2f). Since the physical frequency is constant, this shows that the 
wavelength of a disturbance increases as 2.%. For flow conditions on the (P, G*) 
plane below the curve, (i.e. in the region where Cr > U,,,), C,. was observed to 
increase to almost twice Urnax, and above the curve to decrease to about 6 %  
below U,,,. 

The eigenfunctions were also examined. The complex eigenfunctions were 
made more meaningful in a physical sense by converting them into disturbance 
amplitude and phase angle profiles. The amplitude is the absolute value, and the 
phase angle is the argument of the complex eigenfunctions. This conversion is 
discussed by Knowles & Gebhart (1968). Profiles were plotted for the tangential 
disturbance velocity component, and for the disturbance temperature. In  
plotting, all of the amplitude profiles have been normalized to one at  their 
maxima. The disturbance temperature phase profiles have been terminated at  
7 = 3 because the disturbance temperature amplitude is essentially zero there. 

= -0.050 
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Amplitude and phase profiles have been plotted for points near the upper two 
constant frequency paths (f2 andf’) shown in figures 1 and 2. The profiles change 
very little with a*, and only those at  the neutral curve and a t  G* = 300 are 
shown (figures 3 and 4). For the Prandtl number used (6.7), the locations of the 
base flow velocity maximum (at 7 = 0.75) and of the inflexion point (at 7 = 1.34) 
are shown. 

F I G ~ E  3. Amplitude and phase profiles nearj3 at G* = 86, ,!? = 0.0961, cli = 0 (on the 
neutral curve, solid lines) and at G* = 300, ,!? = 0.0518, a, = - 0.045 (dashed lines). 

36 Fluid Mech. 34 
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As was mentioned earlier, the boundary condition s’(0) = 0 is more realistic 
at small values of G*, and s(0)  = 0 is more realistic a t  large values. The s’(0) = 0 
condition has, however, been applied over the entire stability plane. In  order to 
demonstrate the effect of this boundary condition, (s(0)/smax) has been plotted 
against Q* (figure 5) for points along the upper two constant frequency paths 
(f2 andf3), the upper branch of the neutral curve ( U )  and part of the lower branch 

FIGURE 4. Amplitude and phase profiles nearf2 at  G* = 43, p = 0.0760, ai = 0 (on the 
neutral curve, solid lines) and at  G* = 300, p = 0.0295, ai = - 0.050 (dashed lines). 
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(L).  Along the neutral curve and along each of the two constant frequency paths 
(s(0)/smax) decreases as G* increases. This behaviour can also be seen in the 
disturbance temperature profiles in figures 3 and 4. 

The phenomenon of wave amplification in a uniform flux natural convection 
boundary layer has been under investigation experimentally. The results of this 
study, which will be published, are in good agreement with the theoretical ampli- 
fication rates and disturbance profiles presented here. 

I I I 
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G* 

FIGURE 5. (s(O)/s,,) versus G*. (U and L correspond to the upper and lower branches of 
the neutral curve respectively.) 

4. Conclusions 
The coupled Orr- Sommerfeld equation has been integrated for a Prandtl 

number of 6.7 and with distance amplification. The s’(0) = 0 boundary condition 
has been applied. It is appropriate for thin surfaces with a very small relative 
heat capacity. The equations were integrated toward the surface, and the eigen- 
values were determined by the Newton-Raphson method used by Nachtsheim 
(1963). A least-squares eigenvalue extrapolator was used to march in both ai and 
G*. This greatly increased the marching step sizes possible. Employing these 
techniques the equations were integrated in the damped and amplified regions 
and up to G* = 300. 

There may be some error in the results due to the one-dimensional flow 
assumption. There is, however, support for such approximation in the good 
agreement between experimental results of Polymeropoulos & Gebhart (1967) 
and the theoretical results of Nachtsheim (1963) and of Polymeropoulos & 
Gebhart (1966) where this assumption is also made. A similar substantiating 
agreement is indicated by the work of Knowles (1967), in liquids. 

The amplification rate contours located in the present work were used to 
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calculate the relative amplitude of a disturbance as it is convected downstream. 
The eigenfunctions show how the amplitude and phase profiles of a disturbance 
vary relatively little as it travels. 

A very important result of this investigation was the demonstration that the 
disturbances which amplify fastest occupy a frequency band which is much 
higher than the frequency that begins to amplify first. This is not evident from 
consideration of the neutral curves alone. Amplification is determined by inte- 
grating along the paths disturbances follow across the amplification rate con- 
tours of t'he p-G* diagram as they are convected downstream. The amplitude 
ratio contours thus produced clearly indicate the most rapidly amplifying band 
of frequencies. It is this band which one would expect to lead to transition and 
turbulence. The importance of the critical G* (and of the frequencies in that 
region which begin to amplify first) is further diminished when one examines the 
wavelengths of these disturbances. Over the entire region considered, these 
wavelengths were much longer than the distance to the leading edge. 
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